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AbstractThis paper provides an update to [1] on the 
developments associated with a Prognostics and Health 
Management (PHM) system design tool that integrates a 
model-based FMECA methodology with state-of-the-art 
system simulation directly linked to downstream Life Cycle 
Costs (LCC).  This design tool will seek out recommended 
PHM system designs based on a cost function that 
accurately represents key LCC variables such as system 
availability, maintainability, reliability, and failure mode 
observability.  The tool will be capable of assessing PHM 
sensor requirement specifications at the component and 
subsystem levels, and will then allow for integration into a 
broader integrated system model.  Tradeoff, sensitivity and 
“what if” analysis will then allow the designer/user to 
examine the cost/benefit relationship of either adding or 
removing sensor and algorithms under consideration for the 
PHM design.  An interactive database of existing PHM 
technologies for specific applications will also be accessible 
within the design tool for suggesting sensors/algorithms for 
monitoring various system parameters.  Finally, the 
approach introduces a collaborative, web-enabled 
environment for enhanced realization and virtual simulation 
of PHM system design.  A simplified example of a Health 
Management system cost/benefit analysis on an aircraft 
electromechanical valve is provided for illustration of the 
concepts introduced.  
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1. INTRODUCTION 

The application of “health” or “condition” monitoring 
systems serves to increase the overall reliability of a system 
through judicious application of intelligent monitoring 
technologies.  A consistent health management philosophy 
integrates the results from the health monitoring system for 
the purposes of optimizing operations and maintenance 
practices through, 1) prediction, with confidence bounds, of 
the Remaining Useful Life (RUL) of critical components, 
and 2) isolating the root cause of failures after the failure 
effects have been observed.  If RUL predictions can be 
made, the allocation of replacement parts or refurbishment 
actions can be scheduled in an optimum fashion to reduce 
the overall operational and maintenance logistic footprints.   
Fault isolation is a critical component to maximizing system 
availability and minimizing downtime through more 
efficient troubleshooting efforts.  
 
Aside from general exceedence warnings/alarms, health 
monitoring initiatives mostly take place after in-field 
failures (and substantial costs) have been incurred.  To 
address this issue, this paper proposes the concept of a 
Health Management Virtual Test Bench or a software tool 
that is not only used for health monitoring system design but 
also for system validation, managing inevitable changes 
from in-field experiences, and evaluating system design 
tradeoffs (Figure 1). 
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Figure 1 - Health Management with System Design 
 

Because an initial system FMECA is performed during the 
design stage, it is a perfect link between the critical overall 
system failure modes and the health management system 
designed to help mitigate those failure modes.  Hence, a key 
aspect of the process presented links this traditional 
FMECA analysis with health management system design 
optimization based on failure mode coverage and life cycle 
cost analysis. 
 
 
2. ROLE OF FMECA IN HEALTH MANAGEMENT  

FMECA’s historically contain 3 main pieces of information 
as described below: 
 
1. A list of failure modes for a particular component 
2. The effects of each failure mode ranging from a local 

level to the end effect 
3. The criticality of the Failure mode (I – IV), where (I) is 

the most critical 
 
While this type of failure mode analysis is beneficial in 
getting an initial (though generally unsubstantiated) measure 
of system reliability and identifying candidates for 
redundancy, there are several areas where fundamental 
improvements can be made so that FMECA’s can assist in 
health monitoring design.  Four shortcomings of traditional 
FMECA’s are: 
 
1. Traditional FMECA does not address the precursors or 

symptoms to failure modes. 
2. To move maintenance from reactive to proactive, it is 

important to focus on both system and component level 
indications that the likelihood of a substantial failure 
mode has increased.  Failure mode symptoms that occur 
prior to failure are these indications.  An example of 
failure mode symptoms associated with a bearing 
would be an increase in spike energy or an increase in 
the oil particulate count. 

3. Traditional FMECA does not address the sensors and 
sensor placement requirements to observe failure mode 
symptoms or effects. 

4. Traditional FMECA does not address health 
management technologies for diagnosing and 
prognosing faults. 

5. Traditional FMECA typically focuses on subsystems 
independently.   

 
With these shortcomings in mind, a new approach has been 
developed that extends far beyond traditional FMECA 
capability and used in the design of health monitoring and 
management systems. 
 
 

3. APPROACH TO HEALTH MANAGEMENT 

DESIGN 

Figure 2 provides an overview of the approach to health 
management system design optimization.  A basic 
description of each block will be given first, then details 
associated with each block will follow.  First, a Function 
Block diagram of the system must be created that models 
the energy flow relationships among components.  This 
functional block diagram provides a clear vision of how 
components interact with each other across subsystems.  On 
a parallel path, a tabular FMECA is created that corresponds 
to a traditional FMECA except it contains failure mode 
symptoms, as well as sensors and diagnostic/prognostic 
technologies.  Alternately, a system response model may be 
used for assessing sensor placements and observability of 
simulated failure modes thus offsetting the manual burden 
of creating the FMECA.  Finally, maintenance tasks that 
address failure modes are included.    
 
The information from the Functional Block diagram and the 
tabular FMECA is automatically combined to create a 
graphical health management environment that contains all 
of the failure mode attributes as well as health management 
technologies.  The graphical health management 
environment simply a sophisticated interface to a relational 
database.  Once the graphical health management system 
has been developed, attributes are assigned to the failure 
modes, connections, sensors and diagnostic/prognostic 
technologies.  The attributes are information like historical 
failure rates (failures / 1E5 operating hours), replacement 
hardware costs, false alarm rates etc., which are used to 
generate a fitness function for assessing the benefits of the 
health management system configuration.  The “fitness” 
function criteria include system availability, reliability, and 
cost.  Some of these attributes must be manually 
determined, if known, while others are related to the 
attributes of the diagnostic/prognostic technologies can be 
determined from independent measures of performance and 
effectiveness tests or from pre-developed databases.  
Finally, the health management configuration is 
automatically optimized from a cost/benefit standpoint 
using a genetic algorithm approach.  The net result is a 
configuration that maintains the highest system reliability to 
cost/benefit ratio. 



 
 

Figure 2 – Architecture of PHM Design tool 
 
 

4. FUNCTIONAL BLOCK DIAGRAM 

The Function Block Diagram (FBD) contains an integrated 
representation of how components, subsystems and systems 
interact with one another.  It is not a simulation, only a 
hierarchical map of physical energy flows (i.e. torque 
transfer, current, pressure).  This energy flow map serves as 
the backbone for the health management design 
environment because it contains the failure mode symptoms 
and effects as well as capturing their temporal paths.  Figure 
3 shows an example of a functional flow diagram at a 
“system” level.  One could select any of the components to 
reveal specific interactions between its associated subsystem 
components.   

 

 
 

Figure 3 – Functional Block Diagram Layout 
 
 

5. ENHANCED FMECA 

As previously mentioned, with this approach, traditional 
FMECA analyses were enhanced with the addition of 
sensors, health monitoring technologies and failure 
symptoms. Figure 4 shows an example of an enhanced 
FMECA performed on a portion of a fuel system for a F-
100 engine created by Penn State ARL and Impact 
Technologies.  
 
As with traditional a FMECA, the failure mode is provided 
along with its effects (ranked from top to bottom as primary, 
secondary, tertiary, etc.).  The Criticality or Frequency of 
Occurrence of the failure mode is ranked from A to E 
where: 
 
A = Frequent,   
B = Probable,   
C = Occasional,   
D = Remote,   
E = Improbable

 

 
 

Figure 4 – Tabular FMECA of a F-100 Fuel System 



In practice, this Criticality letter would be associated with a 
specific probability of failure range. 
 
The Severity of the failure mode is ranked from I-IV where: 
 
I – Catastrophic,   
II – Critical,   
III – Marginal,   
IV - Negligible 
 
The first FMECA enhancement is that failure mode 
symptoms have been added to the “effects” column and are 
shaded in blue (or light gray).  Failure mode symptoms are 
events that can be observed prior to the failure mode 
occurring or when the failure mode is in a very early stage 
of development.  Subsequent effects may or may not be 
downstream failure modes.  In the case where an effect is a 
downstream failure mode, the failure mode of focus could 
be considered a failure mode precursor. 
 
The “Component” column identifies the component 
immediately affected by the failure mode while “Module” is 
the subsystem in which the component resides.  This 
functional relationship is cross-referenced with the 
functional block diagram.  In a similar fashion, the “Sensor” 
column lists the sensor that can observe the symptom or 
effect while “S_Module” is the subsystem in which the 
sensor resides and “S_Component” is the component it is 
linked to.  All sensors in this example are required for 
control or safety purposes.  Finally, “Diagnostics” and 
“Prognostic” column have been added.  The “Diagnostics” 
column describes if there are any discrete diagnostic (Built 
in Test (BIT)) or continuous processing algorithms that can 
observe the symptom or effect.  The “Prognostics” column 
describes any prognostic algorithms that can be used to 
obtain a RUL prediction on the failure mode.   
 
 

6. RESPONSE MODELS 

In some cases, a model of a subsystem may be developed 
that can provide valuable insight into where sensor are 
likely to have the most observational quality on failure 
modes.  This optional level of fidelity allows for detailed, 
physics-based subsystem modeling, to be used for 
examining PHM trade-off’s.  Such tradeoff’s at this level 
would include analyzing the number of sensors required, 
location of the sensors and associated algorithms.   This 
type of mo del would be integrated in the overall HM design 
environment thus far discussed where cross-system 
influences can be examined and accounted for (Figure 5). 
 

 
 

Figure 5 – Response model integration in the overall HM 
model 

 
One such system response model for a hydraulic system 
developed by Dr. Jacek Stecki et al. of Monash University is 
shown in Figure 6.  This model illustrates how the system 
model may be perturbed to simulate how the effects of 
certain modes propagate in time and space.  Sensor / 
algorithm combinations can be examined for their ability to 
detect the perturbations. 
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Figure 6 – Example of a detailed system response model 
 
 

7. HEALTH MANAGEMENT ATTRIBUTES   

To autonomously evaluate the cost/benefit of a HM system 
configuration, all aspects of the system must ultimately be 
assigned, or modify, a dollar value so that a cost function 
can be generated and optimized.  Some of these “attributes” 
are more easily derived that others.  The attributes assigned 
within a HM system and their respective icons are linked to 
Failure modes (F/FM), Sensors (eye), Effects, Diagnostics 
(Stoplight-discrete, x-y plot - continuous), Prognostics 
(stethoscope) and Maintenance Tasks (M).  A short list of 
these attributes is shown in Figure 7.  Some of the less 
obvious attributes are described next. 
 



 
 

Figure 7 - Short list of HM attributes 
 

Sensors 

Sensors are defined in the model as components for 
measuring physical quantities such as temperatures, 
pressures and currents.  The “Observational Quality” 
attribute of a particular sensor is a measure of the sensitivity 
with which it is able to pick up a physical signal linked to a 
particular failure mode.  For example, an accelerometer stud 
mounted on top of a bearing casing may have a better 
observational quality than one magnetically mounted some 
distance away.  
 
Diagnostic and Prognostic Attributes  

Diagnostics can be either discrete or continuous.  Discrete 
diagnostics are traditionally algorithms that produce 0 or 1 
depending on if a threshold has been exceeded.  Many types 
of Built In Tests (BITs) can be classified as Discrete 
Diagnostics.  An example of a discrete diagnostics is an 
Exhaust Gas Temperature (EGT) reading that has exceeded 
a predetermined level. 
 
Continuous diagnostics are algorithms designed to observe 
transitional effects and diagnose a failure mode based on the 
method and rate in which the effect is changing.  
Continuous diagnostics are usually associated with 
observing the severity of failure mode symptoms.  Examples 
of continuous diagnostics would be a spike energy monitor 
for identifying low levels of bearing race spalling or an A.I. 
classifier for diagnosing that a valve is sticking.  The 
“Detection Confidence score (0-1) – (DDC)”, and “% false 
positive score (0-1) – (DFP)” can be used to simultaneously 
account for true-negative and true-positive characteristics. 
 
Finally, Prognostic algorithms can use a combination of 
sensor data, a-priori knowledge of a failure mode and 
diagnostic information to predict the time to a failure or 
degraded condition with confidence bounds.  Prognostic 
algorithms are linked directly to failure modes in the 
graphical FMECA model.   
 
Prognostics do not have an attribute associated with false 
alarms.  The “Prognostic Accuracy” accounts for the early 

detection quality of the technology.  A physical prognostic 
model (i.e. based on an FE model) would ideally have a 
higher prognostic accuracy than an experienced-based 
model (i.e. Weibull distributions of historical failure rates).   
More details on model fidelity are discussed in [2]. 
 
A valid concern is how the technical attributes of diagnostic 
and prognostics technologies can be determined.  One 
method is addressed in [1], whereby algorithms are test 
objectively from performance and effectiveness standpoints 
using transitional run to failure data.  Of course in the 
absence of this type of information, and with a new 
sensor/algorithm combination, an educated guess may be 
the only option. 
 
 

8. COST FUNCTION 

The health management design environment configuration 
and attributes contain a sufficient amount of information to 
generate and evaluate a “fitness” function.  This fitness 
function is of the form: 
 
For each Failure Mode – FM(i) 
Step 1)  Probability of Failure * Severity *Consequential  

Cost of FM(i) +(Downstream Failure Mode 
Consequential Costs) * Probability of Propagation 

Step 2)  *HM risk reduction attributed to FM(i)  
Step 3)  + Cost associated with False Alarms on FM(i)  
Step 4)  + Total Cost of all HM technology 
 
The Consequential Cost (CC) is the sum of the direct and 
indirect costs required to address a particular fault/failure 
mode (i.e. repair, replace, inspect) ranging from quantifiable 
repair and labor costs, to less concrete costs such as the 
effect on system availability.  Clearly, only a small aspect of 
all the possible factors are addressed here and the issue is 
purposely left ambiguous.  If the probability of failure 
multiplied by consequential costs is defined as risk, health 
monitoring reduces risk by providing a probability that a 
particular failure mode can be prevented by 1) either 
detecting an “upstream” fault/failure mode or 2) prognosing 
when a fault/failure mode will occur.  Unfortunately, the 
health monitoring adds development and hardware costs as 
well as the potential for false alarms.  At the system-wide 
level, the benefits of the health monitoring technologies in 
terms of risk reduction must offset the costs and risk of the 
technology addition.  
 
Specifically, the formulation is as follows (using the 
acronyms defined in Figure 7): 
 
Steps 1 and 2 =  
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The "Rolled Up” costs = 
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Finally Step 4 = 
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HM Design Optimization 

The goal of the HM system optimization is to maximize the 
risk reduction provided by the design while minimizing 
costs.  The optimization of the previously described cost 
function will operate between two boundaries; a 
“maximum” HM system configuration that includes the 
“wish list” of all potential sensors and associated algorithms 
that achieve complete failure mode coverage and a 
“minimum” configuration that is necessary for safety and 
control. The optimization algorithm will examine random 
configuration variations and calculate the “fitness” or cost 
for each. 
 
A genetic algorithm optimization scheme was chosen for the 
HM optimization because genetic algorithms are better 
configured to handle optimization problems with little 
regard for non-linearity, dimensionality or function 
complexity in general.  Potential cost functions generated in 
the HM environment can include hundreds of independent 
variables and thus makes it impractical to utilize traditional 
optimization techniques such as gradient decent or other 
derivative-based algorithms.   While the details of the 
optimization are outside the scope of this paper, it is 
important to note that there will be no clear “winner,” rather 
many different HM system configurations will be suggested 
that the designer can evaluate on the basis of additional 
criteria.  More on this subject can be found in [7].   
 
 

9. COLLABORATIVE DESIGN ENVIRONMENT 

Before an example is given, it is important to address the 
design environment and associated architecture to enable the 
entire process.  A collaborative work environment is being 
implemented in this program to allow a number of domain 
experts to operate applications from different locations, 
potentially on different operating systems, while sharing and 
maintaining the same data.  For instance, the HM Design 
Tool will be used to perform advanced component 
simulation models, FMEA and Cost/Benefit Models 
simultaneously at various locations. By utilizing the Internet 

and standard data formats such as XML, data and 
applications will be accessible individually through web-
based servers, and managed through an integration layer, 
which will control the communications protocol and access 
privileges (Figure 8). 
 

 
Figure 8 – Design of Collaborative Work environment 

 
 

10. HM DESIGN EXAMPLE 

A simple, yet realistic example of a Health Management 
design evaluation is shown next.  In this example, an 
electrically actuated control valve concept is addressed for 
an aerospace application.  Recall that a HM design model 
has many hierarchies ranging from the component level to 
the system level.  For brevity, this example will consider, 
but not illustrate, the far-reaching system effects of various 
valve failure modes.  The cost function for this model 
should by no means considered complete.  The purpose of 
the example is only to introduce the HM design and 
optimization process.   
 
The top portion of Figure 9 shows a Line Replaceable Unit 
(LRU) level Functional model of a Load Control Valve 
(LCV) that is used to regulate discharge air from an 
Auxiliary Power Unit (APU).  Compressed air from the 
APU is used for main engine starts, environmental control 
and several other functions.   The “in” and “out” bars on the 
left and right of the model are used to propagate signals, 
flows, and effects between levels.   
 

 
 

Figure 9 – Functional Model and HM design for LCV 
 



The bottom portion of Figure 9 shows the unit level 
maintenance task (denoted by the “U”) to remove/replace 
the LCV.  Also shown are the candidate health monitoring 
algorithms that have the potential to detect a valve 
degrading in performance and allow for proactive 
maintenance.  Algorithm #1 trends the relationship between 
LCV command, motor current, and the actual actuator 
position.  In this scenario, the LVDT used to monitor the 
actuator position is a candidate sensor.  Algorithm #2 trends 
the APU’s exhaust gas temperature and speed with respect 
to the LCV command.  All the sensors used for Algorithm 
#2 are available for “free” because they are required for 
control purposes.   
 
Figure 10 shows the HM design at the torque motor level.  
Contained at this level is a failure mode of torque motor, the 
effects of such a failure, and maintenance tasks on the 
motor.  Also shown is an existing Built-In-Test (BIT) based 
on the torque motor current.  This BIT is either 0 or 1 and 
can provide no prognostic capability or truly isolate a failure 
mode.   
 

 
 

Figure 10 – HM design at the Torque motor level 
 
Figure 11 illustrates the HM design at the actuator where the 
LVDT would physically exist.  Note that due to the cause 
and effect relationship, failure of the actuator position to 
function could be the result of a torque motor problem or an 
actuator failure mode.  Finally, Figure 12 is the HM design 
for the butterfly valve.  Many upstream failure modes can 
cause it to malfunction creating potentially creating more 
critical downstream failure modes such as insufficient 
avionics cooling, inability to start the main engines, etc.  
Clearly, such a model should continue through system 
interactions until end effects are reached.   
 

 
Figure 11 – HM design for Actuator 

 
 

 
 

Figure 12 – HM design for Butterfly valve 
 
Figure 13 provides a concise illustration of some of the 
attributes assigned to the HM elements in Figures 9-12 that 
were used in evaluating the cost function.  Other 
“expensive” fault/failure modes such as inability to start the 
main engines and inadequate avionics cooling were also 
included.  For brevity, the details of the cost function 
analysis will not be given.  In this simple study, the LVDT 
sensor and algorithm #1 where found not to provide enough 
risk reduction for the cost, rather, algorithm #2 should be 
implemented.  There are, of course, a number of variables 
contributing to this result the most dominent being the fact 
that algorithm #2 uses existing sensors even though it 
provides lower diagnostic confidence and was assigned 
higher development costs. 

 

 
 

Figure 13 – Costs and probabilities for the HM design 
 



11. CONCLUSION 

An approach has been presented that extends traditional 
FMECA and system modeling capabilities to aid in the 
design of complex health management systems.  This 
approach utilizes a graphical and collaborative design 
environment where failure modes, failure mode 
symptoms/effects, sensors, and diagnostic/prognostic 
technologies are represented.  The health management 
system configuration can be optimized from a cost/benefit 
through analysis of the fitness attributes on HM system 
building blocks.  The ultimate objective of this approach 
was to form a methodology and environment which enables 
effective health management practices by mitigating or 
preventing failure modes while still keeping sensor and 
diagnostic/prognostic technology costs at a minimum. 
 
 

ACKNOWLEDGMENTS 

We would like to acknowledge the contributions of Carl 
Byington of Impact, Dr. Jacek Stecki of Monash University, 
Rob Campbell of Penn State ARL, and the support of Andy 
Hess and Dr. William Scheuren of DARPA in this ongoing 
project. 
 
 

REFERENCES 

[1]  Kacprzynski, G., and Roemer, M., “Extending FMECA 
– Health Management Design Optimization for Aerospace 
applications”, Proceedings of the IEEE 2000 
  
[2]  Orsagh R.F. and Roemer, M.J. “Development of 
Metrics for Mechanical Diagnostic Technique Qualification 
and Validation”, COMADEM Conference, Houston TX, 
December 2000. 
 
[3]  Roemer, M. J. and Kacprzynski, G.J.,  “Advanced 
Diagnostics and Prognostics for Gas Turbine Engine Risk 
Assessment,” Paper 2000-GT-30, ASME and IGTI Turbo 
Expo 2000, Munich, Germany, May 2000. 
 
[4] Lewis, E., Introduction to Reliability Engineering, John 
Wiley & Sons, New York, 1987 
 
[5]  Roemer, M. J., and Atkinson, B., “Real-Time Engine 
Health Monitoring and Diagnostics for Gas Turbine Engines,” 
Paper 97-GT-30, ASME and IGTI Turbo Expo 1997, Orlando, 
Florida, June 1997. 
 
[6]  Brooks, R. R., and Iyengar, S. S,  Multi-Sensor Fusion, 
Copyright 1998 by Prentice Hall, Inc.,  Upper Saddle River, 
New Jersey 07458 
 
[7] Canada, J, and Sullivan, W, Capital Investment Analysis 
for Engineering and Management, Copyright Prentice Hall 
1996 
 
 

[7]  Yukish, Michael, “Simulation Based Design and 
Lifecycle cost estimating”,  54th Proceedings of the Society 
for Machinery Failure Prevention Technology (MFPT),  
Virginia Beach, VA, May 2000. 
 
Gregory J. Kacprzynski is a 
Project Manager at Impact 
Technologies with over 5-yr. of 
experience in the development of 
diagnostic/prognostic systems for 
compressors, pumps, power 
transmission components, gas 
and steam turbines.  He has been 
involved in developing real-time, 
intelligent health monitoring 
systems for gas turbine engines for on-wing and test cell 
applications as well as for other air vehicle subsystems. 
Early in his career he developed stochastic life assessments 
of steam turbine components and performed failure analysis 
and vibration testing of various mechanical structures.  
Greg has published papers and developed technologies in 
the area of maintenance optimization, FMECA’s, Life Cycle 
cost assessment, model-based prognostics and data fusion 
technologies.  Greg has his MS and BS in Mechanical 
Engineering from Rochester Institute of Technology. 
 
Dr. Michael J. Roemer is the Director of Engineering at 
Impact Technologies in Rochester, 
NY and Adjunct Professor of 
Mechanical Engineering at the 
Rochester Institute of Technology.  
He was formerly a Vice President 
of Engineering at STI 
Technologies prior to joining 
Impact Technologies.  Mike has a 
Ph.D. in Mechanical Engineering, 
M.S. in Systems Engineering and 
B.S. in Electrical Engineering, all 
from the State University of New York at Buffalo. He has 
over 14 years experience developing real-time, automated 
health management technologies for complex systems, 
including large steam and gas turbines, gas turbine engines, 
rotary/fixed-wing aircraft subsystems and naval propulsion 
systems.  He has developed several diagnostic and 
prognostic capabilities for complex systems utilizing 
probabilistic methods that are directly linked to 
maintenance planning and system operation.  He is the 
author or co-author of more than 50 technical papers in 
these subject areas.  He is currently the Chairman of the 
Machinery Failure Prevention Technology (MFPT) Society, 
a Division of the Vibration Institute, and Prognostics Lead 
for the SAE-E32 Engine Condition Monitoring Committee. 
 
 
 

papers/ieee2002/Hmdesignver2.doc 

 


